skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kurbidaeva, Amina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY We examined the nature and evolution of three‐dimensional (3D) genome conformation, including topologically associating domains (TADs), in five genomes within the genusOryza. These included three varieties from subspecies within domesticated Asian riceO. sativaas well as their closely related wild relativesO. rufipogonandO. meridionalis. We used the high‐resolution chromosome conformation capture technique Micro‐C, which we modified for use in rice. Our analysis of rice TADs shows that TAD boundaries have high transcriptional activity, low methylation levels, low transposable element (TE) content, and increased gene density. We also find a significant correlation of expression levels for genes within TADs, suggesting that they do function as genomic domains with shared regulatory features. Our findings indicate that animal and plant TADs may share more commonalities than were initially thought, as evidenced by similar genetic and epigenetic signatures associated with TADs and boundaries. To examine 3D genome divergence, we employed a computer vision‐based algorithm for the comparison of chromatin contact maps and complemented this analysis by assessing the evolutionary conservation of individual TADs and their boundaries. We conclude that overall chromatin organization is conserved in rice, and 3D structural divergence correlates with evolutionary distance between genomes. We also note that individual TADs are not well conserved, even at short evolutionary timescales. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026